A Review of Analog Concepts Required in Control

Ideal Op Amp	Practical Op Amp
$R_{IN} = \infty \Omega$	$R_{IN} = 10 M\Omega$
$R_{OUT} = 0\Omega$	$R_{OUT} = \langle 100 \Omega$
$A_{V_{OL}} = GAIN_{OPENLOOP} = \infty$	$GAIN_{OPENLOOP} = 100.dB(100,000)$

Memorize these characteristics of op amps.

Vin is a voltage difference between + and -, it is not referenced to ground

Gain in decibel of an amplifier is : 20 $Log_{10}A_{Open \ Loop} = Gain \ in \ dB$

For amplifiers in series, the gains in dB are added to get overall gain Example:

If the (+) input is in positive with respect to the (-) input the output of the op amp will be positive. If the (+) input is in negative with respect to the (-) input the output of the op amp will be negative.

Vin
$$(- + A_{OL} - +$$

If $V_0 = 10V$, then the input voltage is

$$Vin = \frac{10}{100,000}$$
$$Vin = 100 \,\mu V$$

Since V_{in} is so small, it can be said that V_{IN} is virtually 0 Volts. The current would be very small into the op amp because of the small V_{IN} and the high Z_{IN} . Current could be as small as be 10 pA. Inverting Amplifier

Remember the GAIN described above is the *closed loop* gain.

In any linear application the (+) and (-) terminals of any op amp are at zero potential.

Find Vout/Vin in terms of resistors, V1, and V2

Describe the relationship between Vout and Vin if if the op amp is not saturated.

the relationship between Vout and Vin.

