

Separately excited field. Armature control

Angular acceleration = $\frac{d\omega}{dt}$ in Radians\second

Torque = T, F = friction factor, $F\omega$ = friction proportion al to speed

$$T = J \frac{d\omega}{dt} + F\omega$$
 but Torque for DC motor $T = K_f I_f I_a$

where K_f is a factor that is function of motor geometry

I_f is field current

Ia is armature current

sometimes we group $K_f I_f$ and call it K_T . This is done when the field current is held constant

 $E_{CEMF} = K_g \omega$ Where K_g function of motor geometry

$$T = K_{T}I_{a} = J\frac{d\omega}{dt} + F\omega$$
$$I_{a} = \frac{V_{S} - K_{g}\omega}{R_{a}}$$
$$K_{T}[\frac{V_{S} - K_{g}\omega}{R_{a}}] = J\frac{d\omega}{dt} + F\omega$$

Rewrite $K_{\tau}[\frac{V_s - K_g \omega}{R_a}] = J \frac{d\omega}{dt} + F\omega$ into an expression like $\tau \frac{d\omega}{dt} + \omega = K_s V_s$ by putting like terms on each side

$$\begin{split} &\frac{K_{T}}{R_{a}}V_{S} - \frac{K_{T}K_{g}}{R_{a}}\omega = J\frac{d\omega}{dt} + F\omega \\ &\frac{K_{T}}{R_{a}}V_{S} = J\frac{d\omega}{dt} + \omega \left(\frac{K_{T}K_{g}}{R_{a}} + F\right) \\ &\left(\frac{\frac{K_{T}}{R_{a}}}{\frac{K_{T}K_{g} + R_{a}F}{R_{a}}}\right)V_{S} = \left(\frac{J}{\frac{K_{T}K_{g} + R_{a}F}{R_{a}}}\right)\frac{d\omega}{dt} + \omega \\ &\left(\frac{K_{T}}{K_{T}K_{g} + R_{a}F}\right)V_{S} = \left(\frac{R_{a}J}{K_{T}K_{g} + R_{a}F}\right)\frac{d\omega}{dt} + \omega \end{split}$$

compare the above expression to: $\tau \frac{d\omega}{dt} + \omega = K_s V_s$

These are both first order Linear Differential Equation. Comparing coefficients, $\tau = \frac{J}{K_{T}K_{g} + R_{a}F}$

$$K_{s} = \frac{K_{T}K_{g} + K_{a}F}{K_{T}K_{g} + R_{a}F}, K_{s} \text{ is referred to as the speed constant}$$

$$\tau \frac{d\omega}{dt} + \omega = K_S V_S$$
, units of K_S are $\frac{\text{Rads / sec}}{\text{volt}}$

use the following LaPlace transform pair to find the transfer function for the DC motor $\frac{d\omega(t)}{d\omega(s)} \Leftrightarrow s\omega(s) \qquad \omega(t) \Leftrightarrow \omega(s)$

dt
$$(\bigcirc sub(s))$$
 $(() \bigcirc w(s))$
 $K_{s}V_{s}(s) = \tau s\omega(s) + \omega(s)$
 $= (\tau s + 1)\omega(s)$
 $\therefore \frac{\omega(s)}{V_{s}(s)} = \frac{K_{s}}{\tau s + 1}$ first order transfer function, V_s is supply voltage
Suppose V_s(s) = 100 V DC, LaPlace of constant supply voltage of 100 is $\frac{100}{s}$
Suppose $\omega(s) = \frac{100K_{s}}{s(\tau s + 1)}$

using LaPlace transform pair $\frac{K}{s(as+1)} \Leftrightarrow K(1-e^{\frac{-t}{a}})$ then $\omega(t) = 100K_s(1-e^{\frac{-t}{\tau}})$

Steady state speed is the final speed after the transient has disappeared. Theoretically it occurs when t is infinity. When this occurs, the term $e^{\frac{-t}{\tau}}$ goes to zero. Practically, after about 5τ the speed is about 99% of the steady state speed. The steady state speed is: $\omega_{\text{Steady State}} = 100K_{\text{S}}$ for $V_{\text{S}} = 100$. Another way of viewing this is to realize that at steady state the angular acceleration is 0.

