Implementing the PID Using a Computer

Proportional Control

 $C_n = Ke_n$ where n is the sample number and K is the gain of the proportional term. C is the output from the controller.

Integral Control

Shown below is an error signal that varies with time

 $A_1 \sim e(t_1)T$ $A_2 \sim e(t_1+T)T$ $A_3 \sim e(t_1+2T)T$

Total Area from t_1 to t_1+3T is $A_{total} = e(t_1)T + e(t_1+T)T + e(t_1+2T)T$ The smaller T is, the more accurate the approximation for total area is.

$$A_{total} = \sum_{i=1}^{3} e(t_i + (i-1)T) \text{ or}$$

or
$$A_{total} \cong \int_{1}^{1+2T} e(t) dt$$

To use a computer to integrate the error, the equation is rewritten in the form of a difference equation. That is:

 $I_{n+1} = I_n + e_n T$

where n is the sample number. I_{n+1} is the new value which is equal to the old value I_n plus the increment e_nT .

The difference equation is put into a loop. Thus the equation solution reccurs over and over continuously. The solution is said to be recursive.

An example of of integration using the above recursive equation is shown below:

Assume sampling time T is 1 second and that e is sampled at .001 sec, 1.001 sec, 2.001 sec, etc.

Calculate and plot the integral of e recursively using $I_{n+1} = I_n + e_n T$.

Solution											
time	.001	1.001	2.001	3.001	4.001	5.001	6.001	7.001	8.001	9.001	10.001
e _n	10%	10%	10%	10%	10%	0%	0%	0%	0%	0%	0%
I _{n+1} =I _n +e _n T	10%	20%	30%	40%	50%	50%	50%	50%	50 %	50%	60%

In a PI controller, the integrating term is actually multiplied by the controller gain K and divided by the integral factor T_i . That is:

$$C_{out} = Ke + \frac{K}{T_i}\int edt$$

In the example above, suppose K=2 and $T_{i}\text{=}10$

time	.001	1.001	2.001	3.001	4.001	5.001	6.001	7.001	8.001	9.001	10.001
e _n	10%	10%	10%	10%	10%	0%	0%	0%	0%	0%	0%
Ke _n	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
I _{n+1} =I _n +(K/T _i)e _n T	2%	4%	6%	8%	10%	10%	10%	10%	10%	10%	12%
C _{out}	22%	24%	26%	28%	30%	30%	30%	30%	30%	30%	30%

Solution

For $\frac{de}{dt}$ over a small interval of time, de can be approximated by the current value of error minus the old value error where the error is sampled (e_n - e_{n-1}). the dt term can be

thought of as the interval between samples, that is the sampling time. For this approximation to be valid the sampling time T must be small compared to the rapidity in the change of the error signal.

Then $\frac{de}{dt} \approx \frac{e_n - e_{n-1}}{T}$. Remember that the controller output for the PID equation is:

$$C_{out} = K[e + \frac{1}{T_i}\int edt + T_d \frac{de}{dt}]$$

the derivative term of the PID equation can then be expressed as:

 $KT_d(e_n-e_{n-1})$

The block diagram for implementing the derivative in a computer real time program would look like:

