Lab 5

Compare the results from Labs 1 through 4

Procedure

Fill in the following chart:

				Approximate Decay	Disturbance
	Р	I	D	Ratio	Response Comments
Lab 1	9	28	14		
				Decav Ratio = 0.5	Drop in Temp = 4 C
				Long time to steady	Deg. Recovery to first
Default Tuning Constants				state	crossing = 113 sec
Lab 2	3	48	12		
				Decay Ratio = 0.14	Drop in Temp = 2 C
Optimum Tuning Constants				Short time to steady	Deg. Recovery to first
generated from ZNOL Autotune				state	crossing = 70 sec
Lab 3	9	28	14	Extremely long time	
				to steady state. First	
				pk at 38 deg C. First	
				crossing of set point	
				at 400 sec. More then	Not Applicable as
				40 minutes to steady	disturbance fixed at
Default Tuning Constants				state.	100%
Lab 4	1	92	23	About 20 minutes to	
				completely come to	
				steady state. First	
				crossing around 400	
				sec. First peak about	
				36 deg C. Second	
	<u> </u>	• • •		peak was	Not Applicable as
Optimum Tuning Constants				undetectable above	disturbance fixed at
generated from ZNOL Autotune				35 deg C	100%

Conclusion:

Using ZNOL Autotune significantly improves control.

In both slow and fast processes, using Autotune improves response to Set Point and disturbance changes.